Gravitational Lensing
Commentary and Discussion

Jiayang Sun
Department of Statistics
Case Western Reserve University
Cleveland, OH 44106
jsun@case.edu
Provide commentaries to the following two papers:
Chris Kochanek: Turning AGN Microlensing from a Curiosity into a Tool
Gary Bernstein: Statistical Challenges of Weak Gravitational Lensing
Thanks to Chris and Gary’s papers on gravitational lensing, which vividly refreshed my memory of Pete Kernan’s “trick” on messing up someone’s picture:

Produced by lensing Gary’s picture on

What’s Gravitational Lensing (GL)

Massive bodies can bend/deflect the path of light rays

This effect is called GL

- **Strong Lensing**
 - magnifies, distorts w. obvious traces and may produce multiple images

- **Weak Lensing**
 - produces subtle distortion (shear, magnification)
What’s Gravitational Lensing (GL)

Massive bodies can bend/deflect the path of light rays

This effect is called GL

magnifies, distorts w. obvious traces and may produce multiple images

produces subtle distortion (shear, magnification)

Strong Lensing

Weak Lensing
What’s Gravitational Lensing (GL)

Massive bodies can bend/deflect the path of light rays

This effect is called GL

- magnifies, distorts w. obvious traces and may produce multiple images
- produces subtle distortion (shear, magnification)

Strong Lensing

Weak Lensing

Gravitational Lensing – p.4/11
Challenges

Strong Lensing: Advertising → Delivering

There are data for probing DM, revealing M of distant galaxies, and resolving R, the internal structure of quasars.

Nd: not enough data and analyses based on the static assumptions.

Weak Lensing: regular/Gaussian → irregular/Non-Gaussian

How to measure distortion when shapes of galaxies are irregular

How to extract info given the intervening mass dist. is non Gaussian

Mine: Same AN: GR, AGN, ...,
Challenges

Strong Lensing: Advertising → Delivering

Ad: “There are data for probing DM, revealing $\langle M \rangle$ of distant galaxies, and resolving R, the internal structure of quasars.”

Nd: not enough data and analyses based on the static assumptions.
Challenges

Strong Lensing: Advertising \rightarrow Delivering

Ad: “There are data for probing DM, revealing $<M>$ of distant galaxies, and resolving R, the internal structure of quasars.”

Nd: *not enough* data and analyses *based on the static assumptions.*

Weak Lensing: regular/Gaussian \rightarrow irregular/Non-Gaussian
Challenges

Strong Lensing: Advertising → Delivering

Ad: “There are data for probing DM, revealing $<M>$ of distant galaxies, and resolving R, the internal structure of quasars.”

Nd: not enough data and analyses based on the static assumptions.

Weak Lensing: regular/Gaussian → irregular/Non-Gaussian

How to measure distortion when shapes of galaxies are irregular

How to extract inf given the intervening mass dist. is non Gaussian
Challenges

Strong Lensing: Advertising → Delivering

Ad: “There are data for probing DM, revealing $<M>$ of distant galaxies, and resolving R, the internal structure of quasars.”

Nd: not enough data and analyses based on the static assumptions.

Weak Lensing: regular/Gaussian → irregular/Non-Gaussian

- How to measure *distortion when shapes of galaxies are irregular*
- How to extract *inf given the intervening mass dist. is non Gaussian*

Mine: Same
Challenges

Strong Lensing: Advertising \rightarrow Delivering

Ad: “There are data for probing DM, revealing $<M>$ of distant galaxies, and resolving R, the internal structure of quasars.”

Nd: not enough **data** and analyses based on the static assumptions.

Weak Lensing: regular/Gaussian \rightarrow irregular/Non-Gaussian

How to measure *distortion when shapes of galaxies are irregular*

How to extract *inf given the intervening mass dist. is non Gaussian*

Mine: Same

AN: GR, AGN, ...,
Strong Lensing by Chris

Idea: \[\text{data } D \rightarrow P(D|p) \text{ using } \chi^2 \text{ statistics} \]
+ prior on \(p \) \[\rightarrow P(p|D) \]

where \(p = (k, k_*, \gamma, < M >, R_\lambda, \nu_e) \), \(k \) is mean surface density, \(k_* \) is surface density in stars, \(\gamma \) is shear.

1. Generate random magnification patterns on a range of \((k, k_*, \gamma, < M >)\)
2. Convolve w. selected disk models \(R_\lambda \)
3. Generate light curves \((\nu_e +...)\)
4. Compute the \(\chi^2 \) value for each light structure based on a threshold value to determine \(P(p) \)
 - Model selection vs. hypothesis testing (what are nulls)
 - Hierarchical models (ok) and final verification (data)
5. Approximate Bayesian integrals by sampling/MCMC
5. Approximate Bayesian integrals by sampling/MCMC

- Laplace approximation
- Model averaging and biases

Random Thoughts and comments:
Extrapolation: Fig 2, data
Pages 6, 7, 8, 9
Comments A1-9
1. Define Shapes e_i to galaxies that are irregular

Gary’s solu:

$$\hat{\gamma} = \frac{\langle e \rangle}{1 - \langle e^2 \rangle / 2}$$

where noiseless e^2 is unobserved.

- This leads to a measurement error models in statistics and need to do deconvolution. Is the error distribution (PSF) known?
- An alternative solution may be possible.
Suggestions:

- **Classify patterns** after a Procrustes analysis (affine transformation or image registration) of the data —> using shape code and Procrustes parameters

- **Use topology** (Euler characteristics)

- **Use a mixture** of known shapes with some wavelets basis or other orthogonal basis (Laguerre expansion)

 biases and distribution <— bootstrap
2. Characterize the mass-galaxy likelihood $L(m, g)$
Use a mixture of Gaussian distributions

3. Find a feasible analyses scheme
Use the adaptive estimates, PEM
by Sun, Liu and Chen (06)
Conclusion

For statisticians and scientists:

- **Know context**
 - *Who?* Individuals measured and observed
 - *What?* has been measured and observed
 - *Why?* Study Purpose

- **Have good designs**

- **Avoid bias**

- **Do something about the bias** if there is one.
Conclusion

For statisticians and scientists:

- Know context

 Who? Individuals measured and observed
 What? has been measured and observed
 Why? Study Purpose

- Have good designs

- Avoid bias

- Do something about the bias if there is one.

For scientists:

- Involve a statistician or use statistical strategies **early** (from the design of an experiment to the analysis of the resulting data) not just later (for the analysis part only).